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A study of Bknard convection with and without rotation 

By H. T. ROSSBYf 
Department of Meteorology 
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(Received 16 May 1968 and in revised form 2 October 1968) 

An experimental study of the response of a thin uniformly heated rotating layer 
of fluid is presented. It is shown that the stability of the fluid depends strongly 
upon the three parameters that described its state, namely the Rayleigh number, 
the Taylor number and the Prandtl number. For the two Prandtl numbers 
considered, 6.8 and 0.025 corresponding to water and mercury, linear theory is 
insufficient to fully describe their stability properties. For water, subcritical 
instability will occur for all Taylor numbers greater than 5 x lo4, whereas 
mercury exhibits a subcritical instability only for finite Taylor numbers less 
than lo5. At all other Taylor numbers there is good agreement between linear 
theory and experiment. 

The heat flux in these two fluids has been measured over a wide range of 
Rayleigh and Taylor numbers. Generally, much higher Nusselt numbers are 
found with water than with mercury. In  water, at  any Rayleigh number greater 
than lo4, it  is found that the Nusselt number will increase by about 10 yo as the 
Taylor number is increased from zero to a certain value, which depends on the 
Rayleigh number. It is suggested that this increase in the heat flix results from 
a perturbation of the velocity boundary layer with an ‘Ekman-layer-like’ 
profile in such a way that the scale of boundary layer is reduced. In mercury, 
on the other hand, the heat flux decreases monotonically with increasing 
Taylor number. Over a range of Rayleigh numbers (at large Taylor numbers) 
oscillatory convection is preferred although it is inefficient at transporting heat. 
Above a certain Rayleigh number, less than the critical value for steady con- 
vection according to linear theory, the heat flux increases more rapidly and the 
convection becomes increasingly irregular as is shown by the temperature 
fluctuations at  a point in the fluid. 

Photographs of the convective flow in a silicone oil (Prandtl number = 100) 
at various rotation rates are shown. From these a rough estimate is obtained of 
the dominant horizontal convective scale as a function of the Rayleigh and 
Taylor numbers. 

1. Introduction 
This experimental study is concerned with the response of a thin horizontal 

layer of fluid rotating about the vertical axis when it is subject to uniform heat- 
ing from below and cooling from above. In  general, the unstable stratification 
will cause convective motions whenever the temperature difference exceeds 
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a certain minimum value, which depends on the fluid, the rate of rotation and 
the boundary conditions. 

It can be shown that within the meaning of the Boussinesq approximation 
(Spiegel & Veronis 1960) the state of this fluid-dynamical system is completely 
defined by three parameters, namely the Rayleigh number 

R = a g A T d 3 / v ~ ,  (1.1) 

the Taylor number T a  = 4SZ2d4/v2 (1.2) 
and the Prandtl number P = V I K ,  (1.3) 
where a is the coefficient of thermal expansion, g is the gravitational accelera- 
tion, AT and d are respectively the temperature difference and depth across the 
fluid, v and K are respectively the coefficients of viscous and thermal diffusivity 
and SZ is the rate of rotation about the vertical axis. The Rayleigh number 
represents in non-dimensional form the amount of potential energy being 
applied to the fluid and the Taylor number is a measure of the rotation rate. 
The Prandtl number clearly is a function of the parameters of the fluid only. 

Whenever the Rayleigh number is greater than a certain minimum value 
convection will occur. If the Taylor number is zero, this critical Rayleigh 
number is independent of the Prandtl number and depends only on the boun- 
dary conditions. For obvious reasons we will limit our discussion to apply only 
to rigid boundaries at  the top and the bottom. 

When the fluid is rotated, the critical Rayleigh number becomes a complex 
function of both the Taylor and the Prandtl numbers. Thus, according to linear 
stability theory (Chandrasekhar 196 l) ,  at any arbitrary Prandtl number greater 
than unity instability will result in steady motions at a Rayleigh number which 
depends only on the Taylor number. At small Prandtl numbers, however, 
instability may result in either steady or oscillatory motions depending on 
both the Prandtl and the Taylor numbers. Both types of instabilities have been 
confirmed experimentally by Fultz & Nakagawa (1955) and Nakagawa & 
Frenzen (1955). 

Recently Veronis (1959,1966) has indicated the possibility of a finite-amplitude 
instability a t  subcritical Rayleigh numbers over a certain range of Taylor 
numbers provided the Prandtl number is less than 4 2 .  This instability was not 
observed in either of the two experimental studies mentioned above. 

The first part of this study was therefore an effort to establish experimentally 
the relationship between the critical Rayleigh number and the Taylor number 
in two different fluids, namely water and mercury. Does mercury (P  = 0.025) 
exhibit this finite-amplitude instability? How good is the agreement between 
experiment and theory? According to the analysis of Veronis, water should not 
exhibit this instability. Is this true? 

The second objective of this study was to explore how the heat flux, once 
convection is established, depends on both the Rayleigh number and the Taylor 
numbers in mercury and water. For the special case of no rotation, however, the 
heat flux in three fluids, mercury, water and a silicone oil ( P  - 200), will be 
discussed separately. 

The next section (2) discusses the details of the experimental approach. The 
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following section (3) reviews briefly some attempts to explore the structure of 
the flow photographically. Sections 4 and 5 respectively discuss the results of 
the heat flux measurements without and with rotation. 

2. The convection apparatus 
The fluid under study was contained between two essentially symmetric 

blocks stacked face to face in the vertical (see figure 1). Each one consisted of a 
solid aluminium cylinder 8; in. in diameter and 4 in. high and an 8; in. x in. 
thick copper disk, which were held together by a thick epoxy bond. Thus the 
fluid was sandwiched between the two copper disks. The Rayleigh number was 
computed from the temperature difference across the fluid and the heat flux 
was computed from the temperature drop across the epoxy layers. A discussion 
of this is given in appendix A. The cooling of the upper block was arranged by 
milling a double spiral groove (&in. x i i n .  cross-section) into the top flat 
surface for the thermostated cold water circulation. A 1-4 in. aluminium lid was 
screwed on to seal in the spiral groove. Two 4 in. pipes were added diametrically 
opposite each other on the sides to connect the hosing to the cooling spiral. 

The aluminium surfaces to be bonded to the copper disks were flycut flat to 
0.001 in. and the latter were ground plane parallel in a Blanchard grinder to 
less than 0-001 in. 

Nine & in. (36 in all) holes for thermocouples were drilled in both aluminium 
blocks and each copper plate. The end of these holes defined a 3 x 3 grid pattern 
with 2 in. spacing in a flat plane t in. from the surfaces to be bonded (see figure 2). 
To fill and empty the convection chamber, a pipe on the side of each copper 
disk had access to it through a small hole $ in. from the perimeter. The copper 
disks were chromium-plated to prevent oxidation or amalgamation. 

The crucial step in the assembly was the bonding of the copper disks to the 
aluminium cylinders. If the former are to have a constant temperature it is 
essential that the bond be firm and uniform. To achieve this the surfaces to be 
bonded were carefully cleaned. Then a N 0.3 in. layer of epoxy was bonded on 
each of the aluminium surfaces. When hardened, the epoxy layers were machined 
to exactly the same thickness and flat to < 0.001 in. The copper plates were 
bonded to these layers with another epoxy of low viscosity to ensure good flow 
when they were pressed together. For the mercury heat flux measurements the 
epoxy was replaced with graphite with a higher thermal conductivity. This 
permitted a larger flux and hence larger temperature gradients across the 
mercury without heating and cooling the aluminium blocks excessively. 

Electric wiring 
The temperature difference between the copper plates and aluminium blocks 
respectively were measured by two nine-unit thermopiles, T32 and T41, each 
junction occupying one hole in the copper or the aluminium. T3, and T,, res- 
pectively measure the temperature difference between the copper plates and 
the aluminium blocks. The junctions were electrically insulated with nail 
polish. Good thermal contact was obtained by filling the holes with a paste of 
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FIGURE 1. View of the experimental apparatus centred on the rotating table. During experi- 
ments it was thermally protected with cotton insulation. A, convection chamber ; B, copper 
plates ; C,  thermopile T,, which measures the temperature difference between the copper 
plates; D ,  thermopile T,, which measures the temperature difference between the alumi- 
nium blocks; E,  epoxy layers used to measure heat flux; a, thermostated cold water 
circulation ; G ,  thermistor probe used to control temperature of lower aluminium block; 
H ,  electric heating pad; I ,  thrust and radial bearings; J ,  ‘fluid slip rings’ (see text). Not 
shown are any of the electric slip rings or the motor to control the rotation of the table. 

FIGURE 2. Planform of the thermocouples in the copper plates 
and the aluminium blocks. 



B4nard convection with and without rotation 313 

aluminium oxide. The outputs from the two thermopiles were brought out 
from the rotating table through high-quality electric slip rings. The maximum 
spurious e.m.f. summed over all connectors and slip rings was less than 1 ,uV, 
which corresponds to z 1/360 "C. The procedure for taking the measurements 
and computing the non-dimensional parameters is discussed in appendix A. 

Two additional thermocouples were arranged in such a way that the mean 
temperature of the copper disks, and hence of the fluid, was known. 

Rotating - - Non-rotating 

Heated 
block sensor 

Heating I 7  

Heat - - - 
out 

element 

sliprings transformer (electric relay) Power 
in 

FIGURE 3. Schematic diagram of the heating and cooling systems. 

The lower block was heated electrically by a rubber-insulated bslar  wound 
circular heating pad (82 in. x & in.) bonded directly to the bottom surface of 
the lower block. The maximum thermal dissipation was 360 W. The thermistor 
probe, which regulated the temperature of the lower block, was placed 8 in. 
above the heating pad in a 3 in. deep hole. 

The thermostating system 
The power to the heating pad was regulated by a Fisher model 44 temperature 
control using the thermistor probe as its sensor (see figure 3). The voltage 
was stepped down from 117 Va.o. to 0-60 Va.c. by a variable voltage trans- 
former in order to obtain an optimum heating rate. 

The thermostated cold water was regulated by a Haake thermostated bath 
and was steady to & 0-03 "C. The circulation pump has both pressure and 
suction, so that the mean pressure of the circulated water was close to atmos- 
pheric pressure, thus reducing the risk of leakage in the fluid slip rings (see 
below). After the water left the thermostated bath it passed through a thermal 
choke. The heat was eliminated from the bath by an independent closed-circuit 
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water circulation using a standard drinking fountain water cooler. The tempera- 
ture difference between the aluminium blocks, as measured by the thermopile, 
was steady to & 0.005 "C. 

The rotating table and drive 
The apparatus rests on a large formica block centred on a 4 in. thick steel 
plate of 30in. diameter, which is supported by one thrust bearing and one 
axial bearing (diameters 11 in. and 6 in.). A 5 in. diameter shaft descends below 
the table on the inside of the bearings and serves two purposes. On its outside 
a formica sleeve with six silver slip rings is attached. Three brushes rest against 
each ring to ensure adequate electrical contact. Two of these are used for the 
electric heating pad and two for the thermistor probe. 

Inside the shaft is mounted a two-channel fluid slip ring system for trans- 
ferring the thermostated cold water to and from the rotating framework. The 
central stationary core is made of formica and the rotating seal rings are sup- 
ported by a, lucite cylinder which fits snugly over the core. 

The turntable was driven by a t h.p. motor mounted on a separate frame with 
a variable-speed transmission with an output ranging from 0 to 360 rev/min. 
The torque was applied to the turntable by a timing belt and two pulleys of 
2 in. and 14 in. diameters, giving a speed reduction of 7 x . On the motor-shaft 
a small flywheel was added to improve the stability of the transmission, 
particularly a t  low speeds. A tachometer was run off the flywheel to check the 
stability of the rotation. The peak-to-peak variation of the table's rotation 
(including drift) was less than 1 yo for rotation periods N 100-300 see, improved 
to 0.4 yo at 40 see, and levelled off to < 0.3 yo for shorter periods. 

3. Visual studies of thermal convection with and without rotation 
It is instructive to have some feeling for the spatial structure of the convective 

flow for different values of Rayleigh and Taylor numbers. For example, when 
is the flow laminar, when turbulent, and, particularly, how is it modified as the 
rotation is increased ? The following photographs were taken with these questions 
in mind. 

The technique for visualizing the flow is to illuminate a suspension of alumi- 
nium powder in the fluid with a collimated beam of light. The background was 
kept dark to improve the contrast. With long time exposures the bright particles 
would generate streaks as they moved with the fluid. A fluid with a moderately 
high viscosity, a 10 cSt silicone oil with a Prandtl number 100, was used so that 
the particles would remain in suspension for the duration of the experiment. A 
few photographs are presented in figures 4-6, plates 1, 2 and 3, which give a 
vertical view of the horizontal structure. The photographs of the fluid were 
taken through a hollow glass lid through which constant-temperature thermo- 
stated water is circulated. Information on the photographs is given in tables 1 , 2  
and 3, where AT is the temperature difference across the fluid, f2 is the rotation 
rate in radians per second, s is the non-dimensional wavelength, TeXp is the 
exposure time of the photograph and r is defined in equation (3.2). 
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The following paragraphs give a discussion of some of the more outstanding 
features in the photographs. 

(i) From these and other photographs rolls and roll-like cells appear to be the 
preferred mode of convection from at least R = 2200 to at  least R = 87,000 when 
there is no rotation. This does not exclude the existence of squares or hexagons 
near the critical Rayleigh number. 

(ii) At a certain Rayleigh number between 11,000 and 26,000 without rota- 
tion the rolls lose their strict two-dimensional form to include a lengthwise 
periodic triangular structure. This pattern appears to be stable up to Rayleigh 
numbers of O(lO5) or more, depending on the Prandtl number. The physical 
mechanism for this instability is not clear to the writer. Recently, Busse (1966) 
investigated the stability of two-dimensional rolls at  large R and has found that 
they become unstable at R = 22,000, which is consistent with these observations. 

(iii) At higher Rayleigh numbers the basic cell pattern becomes less distinct 
(figure 6(a ) ,  plate 3), and, although it may be stable with respect to the con- 
vective time scale (depending on the Prandtl number), it does drift about over 
long periods of time. This has been verified with a t'ime-lapse film study. 

(iv) When the fluid is rotated rapidly, a transition takes place at a certain 
radius beyond which the rolls are radially oriented (see figure 4 ( b ) ,  (d), ( f ) ,  
plate 1). The mechanism for this is clear. When the apparatus is rotated, a 
radial acceleration, which increases with radius, is established. The dark lines 
in the photographs represent zones of rising warm and sinking cold fluid 
alternately. If the radial acceleration and the density difference is large enough, 
a ring of cold fluid will be unstable with respect to a ring of warm fluid just out- 
side it and will attempt to replace it. If this were to happen, however, the cold 
ring would become unstable with respect to the next ring of warm fluid, and 
so on. The only stable orientation for the rolls is radial, in which case the radial 
acceleration is perpendicular to the thermal field. 

A very crude estimate of the critical radius may be obtained by computing a 
Rayleigh number associated with the radial acceleration Q2r. If we assume that 
the temperature difference between adjacent rolls is - $AT, the horizontal 
scale is +sd and a critical Rayleigh number, R,, for the twisting of a roll is - 500, 
roughly corresponding to the critical Rayleigh number with free boundary 
conditions, we have 

where R is the imposed Rayleigh number. We find the critical radius is 

Estimates of r are given in tables 1-3. The agreement is consistent insofar as the 
instability appears in figures 4(b) ,  (d)  and ( f ) ,  where in fact r is smaller than the 
radius of the container (10 cm), although according to (3.2) we should observe 
this instability in figure 5 ( f )  also. However, since this radial acceleration 
destroys the horizontal uniformity, which is a basic assumption in the BQnard 
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convection problem, it is essential that its influence be minimized. Obviously the 
radical acceleration cannot be eliminated entirely. 

(v) In figures 5 ( d ) ,  (f) and 6(c), (d)  one observes a buckling of the rolls 
without any particular orientation. As the rotation is further increased they 
break up into cyclonic and anticyclonic vortices. Presumably the buckling is 

R Ta AT z2 S Terp  r 
4 (a) 10,300 0 3.2 0 2- 1 60 

10,300 1400 3.2 3.92 1-9 20 7 4 (b )  
4 (4 26,000 0 7-9 0 2.8 15 

25,000 1060 7.8 3.43 2- 1 15 3 4 (4 
4 (4 43,000 0 13.4 0 2.8 15 
4 (f) 42,000 1580 13-1 4.19 1.7 60 2 

- 

- 

- 

TABLE 1. Parameter values for photographs of thermal convection in figure 4. 
The Prandtl number is 100 and the depth is 0.7 cm 

R Ta AT R S Tex, r 
- 5 (a) 11,000 0 1.12 0 2.3 15 

5 (c) 35,000 0 3.5 0 2- 7 60 

5 ( e )  87,000 0 8.7 0 2.4 60 

TABLE 2. Parameter values for photographs of thermal convection in figure 5. 
The Prandtl number is 100 and the depth is 1.0 cm 

11,000 2020 1.12 2.24 2-1 15 16 
- 

5 ( b )  

35,000 2020 3.5 2.24 1.7 15 9 5 (4 

5(f) 84,000 1970 8.4 2.21 1-56 60 5 
- 

R Ta AT n S Texp r 
- 60 

5 
- 820,000 0 13.7 0 

- - 6 (a) 
6 ( b )  800,000 100,000 13.4 4.83 
6 (c) 56,000 4,400 0.94 1.0 1.46 15 60 
6 (4 37,000 11,000 0.62 1.57 1.54 15 23 

38,000 51,000 0.63 3.43 1.16 15 11 6 (el 
F ( f )  57,000 90,000 0.96 4.5 

TABLE 3. Parameter values for photographs of thermal convection in figure 6. The 
Prandtl number is 100 and the dopth is 1.8 em 

- 15 - 

some form of baroclinic instability. One can compare this with the non- 
sxisymmetric flows that occur in the annulus experiments of Fowlis & Hide 
(1965). Their relevant parameters are 

agATd 4 P ( b  - a)5 

v2d 8 =  T =  SP(b - a)2' (3.3) 

where (b  - a )  is the spacing of the annulus. Assuming a square cross-section for 
our rolls, we can then replace ( b  - a) with d. For figure 6 (d) ,  for example, we 
find the values for these parameters to be 8 = 0.14 and T = 11,000. The latter 
is an order of magnitude smaller than the value necessary for non-axisymmetric 
flows according to Fowlis & Hide (1965). This may be for two reasons: either 
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the comparison is invalid or the disparity is due to the different boundary 
conditions. Our system is inherently more unstable, since we are considering 
rolls which are free to move as a whole, not instabilities within a mechanically 
constrained convective cell as in the annulus experiment. The vortices that 
appear at higher Taylor numbers are very similar to those observed by Naka- 
gawa & Frenzen (1955). 

I 1 I I I I 1 I I 1 I 

I I I I I I I 1 I I I 
102 lo3 lo4 105 

103 I d  
0 

Ta 
FIGURE 7. Lines of constant characteristic non-dimensional horizontal 

wavelength as a function of the Rayleigh and Taylor numbers. 

In  figure 7 we have attempted to summarize on the basis of these and other 
photographs the horizontal scale as a function of the Rayleigh and Taylor 
numbers. The dimensionless wavelength, which includes only the most pro- 
nounced horizontal scales, is defined as twice the horizontal scale divided by the 
depth. 

4. The convective heat transfer in a stationary system 
The principle objective of this study has been to carefully explore the charac- 

ter of the stability properties of the fluid as well as the magnitude of the 
convective heat transfer over a wide range in rotation rates. The particular case 
of no rotation, however, has been the subject of considerable study in the past 
and consequently it is convenient to consider the results pertaining to  this case 
separately in more detail. We shall do this in this section and the results of the 
rotating experiments are presented in the next section. In  all that follows the 
data will be presented, summarized and discussed in non-dimensional form. 
A detailed discussion on the non-dimensionalization of the experimental results 
is given in appendix A. 

Three fluids were used in the heat flux measurements: a 20 cSt silicone oil 
(hereafter referred to as the oil), water and mercury, which cover a range in 
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Prandtl numbers from 200 to 0.025. The measured relationship between the 
Nusselt number and the Rayleigh number for these fluids is presented separately 
in figures 8-10. The experimentally obtained values for the critical Rayleigh 
number and the initial rate of increase of heat flux by convection (frequently 
known as the initial slope) by this study as well as several of the earlier investiga- 
tions are summarized in table 4. 

Initial 
Study d (cm) AT ("C) R, slope Fluid 

Schmidt & Milverton 0.4 1.7 1970 1.76* Water? 
(1935) 0.45 1.0 1580 2.22* Water? 

0.5 1.05 1850 1.78* Water? 
0.55 0.84 1670 2.18* Water? 

Schmidt & Saunders 0-5 1-25 1800 1.89 Water? 
(1938) 0.4 2.1 1700 2.12 Watert 

Malkusz (1954) 0.508 0.741s 1780SI/ 2.89 Water? 
1.016 - - 2.74 Waterf 

Silveston (1958) 0.145 16.1 1820 2.26 Wat,er 
0,305 3.29 16407 2.317 Watcr 
0.305 11.7 1750 2.45 Glycol 

(P  = 135) 

cone oil 
(P  = 200) 

Present work 0.499 2-87 1810 2.50 20 cSt sili- 

0.499 0.86 1760 2-45 Water 
0.693 1-50 1680 1.28 Mercury 

* Experiment not designed for accurate local flux measurement. 
t Did not report values used for the physical properties. 
$ Non-steady experiment. 
$ Estimated from published diagrams. 
/ /  Used data from appendix B. 
fl Insufficient data for accurate estimate (these are lower limits). 

TABLE 4. Summary of various experimental results, including those of the 
present work, at  the critical Rayleigh number 

We have found very good overlap in the Nusselt numbers when obtained at 
the same Rayleigh number, but with different depths of the fluid. This is strong 
evidence that the heat flux measurements were done in an accurate and self- 
consistent manner. Except with mercury, where the scatter is somewhat larger, 
this overlap is within & 2 yo. 

However, very near the critical Rayleigh number there is a larger scatter in 
the results, as is evident in figures 9-10, This lack of uniqueness, as Koshmieder 
(1966) pointed out, is very likely associated with the sensitivity of the convective 
pattern to the shape of the container as well as the rate at  which the equilibrium 
Rayleigh number is approached. 

As in the past, the measured critical Rayleigh numbers are in reasonable 
agreement with theory. It is true that the discrepancies are larger than the 
error in measurement of the temperature differences across the fluid. However, 
we do not know the limits of accuracy of those physical properties upon which 
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R 
FIGURE 8. The Nusselt number as a function of the Rayleigh number in a silicone oil 
with Prandtl number 200. The depth of the fluid was: 0, 0.5 om; x , 1.0 cm; a, 2.0 om; 
+, 3.5 om. 

x x  - . -- 
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1 
lo3 104 105 lo6 lo7 

R 
FIGURE 9. The Nusselt number as a function of the Rayleigh number in water with 
Prandtl number 6.8. The depth of the fluid was: +, 0.5 om; a, 0.7 om; x , 1.0 om; 
0, 2.0 cm; 0, 3.5 cm. 
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the Rayleigh number depends. For example, values for the thermal conductivity 
of water differ by 2 %. Silveston (1958) uses a value of the coefficient of thermal 
expansion which at 20 "C is 2.5 % smaller than ours. Published values for the 
thermal conductivity of mercury range from 0.017 to 0-023 cal/cm see "C. The 
values that have been used in this study are all listed in appendix B. In fact, 
the ease with which one can measure the critical temperature difference sug- 
gests that it could be used as an independent method of measuring one of the 
physical properties, such as the heat capacity, provided the other relevant 
properties are known to sufficient accuracy. 

Study 
Mull & Reihert 

Schmidt & Saunders 

(1930) 

(1938) 

Malkus (1954) 

Silveston (1958) 

Globe & Dropkin 

Present work 

(1959) 

N (at 
Range in R R = 1W) Fluid 

0.7 x lo4-  2.7 x lo5 - Air 
R > 2.8 x 105 7.5 Air 

30,000-150,000 - Water 

R < 500,000 - Water 
R > 500,000 7.54 Acetone 

4,000-44,000 - Water 
R > 25,000 9.57 Water 

7~ 106-3x 10' 12 Water 

R > 4,000 8-93 Silicone 

R > 34,000 8.27 Water 
R > 20,000 5-12 Mercury 

oil 

t Taken from Jakob's (1946) interpretation of Mull & Reiher's (1930) study, assuming a 
Prandtl number of 0.72. 

TABLE 5. Summary of various experimental results, including those of the 
present work, at large Rayleigh numbers 

The initial slope for the rate of increase of the total heat flux just above the 
critical Rayleigh number is about the same for the oil and water and is in 
reasonable agreement with the value Silveston obtained with glycol. His smaller 
value for water, particularly with a fluid depth of only 0.145 em (with a cor- 
respondingly large AT) is probably due to the large variation with temperature 
of the viscosity and the coefficient of expansion. The low values for the initial 
slopes obtained in earlier studies (except Malkus 1954) are probably due to 
inadequate compensation or correction of heat losses from their experimental 
apparatus. 

The Nusselt numbers for the oil and water are in good agreement up to 
Rayleigh number of about 7000, beyond which the difference is almost certainly 
due to the influence of the relatively smaller Prandtl number for water. 

We have approximated our results for the oil and water in three relations in 
table 5. The maximum deviation of any measurement from these relations is 
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about 4 yo. The error is clearly not random, for there is a definite waviness in the 
Nusselt number data which may possibly be related to the discrete changes in 
the rate of increase of heat flux reported by Malkus (1954). By plotting the heat 
flux linearly against the Rayleigh number, one can identify these transitions 
somewhat better, but there appears to be little correspondence between these 
and those observed by Malkus. On the other hand, far too few measurements 
were made here to study adequately such a delicate feature. 

Silveston’s formula and ours for the Nusselt number at  large R disagree 
(unlike the data) by 16% at R = los, which shows that one cannot expect to 
condense all the results into a single formula N = f(R)g(P) correctly describing 
the role of both the Rayleigh and the Prandtl number. However, a detailed 
comparison of our results with Silveston’s data shows very satisfactory agree- 
ment between his and our values for water and between his for glycol (P = 135) 
and ours for the oil (P = 200) at all measured Rayleigh numbers. We also point 
out that a detailed examination of Globe & Dropkin’s (1959) data for water 
suggest that N cc R0.2, a relationship which has apparently gone unnoticed. 

The results for mercury are quite different. We find the critical Rayleigh 
number to be 1680, but the initial slope is only 1-28, which is much smaller 
than the value at  large Prandtl numbers. At large Rayleigh numbers ( > 20,000) 
the data can be approximated by 

(4.1) N = 0.147R0447~OQOL. 

This result is not consistent with that of Globe & Dropkin (1959), who obtained 
a 5 law relation. It is true that our results extend only to R = 500,000, whereas 
their measurements start at R = 180,000. Nevertheless, in this small overlapping 
range the agreement is poor. At R = 200,000, for example, we have N = 3.4 
and Globe & Dropkin have 2.4. It is possible that the poor aspect ratios 
(diameter/depth) 2.5 and 0.5 in their apparatus contributed to the large error 
but it is more likely due to heat fluxes in the side walls, which have not been 
taken into account. 

It appears that the flow in mercury is always turbulent and even within the 
thermal boundary layer we can expect large-amplitude velocity fluctuations. 
On the other hand, the high thermal conductivity of the fluid effectively limits 
the establishment of horizontal density gradients which are required to drive 
the convection. Hence, qualitatively, we see how i t  is not the viscosity but the 
conductivity that is limiting the convective heat transfer. Thus for finite- 
amplitude convection the controlling parameter is really PR rather than R. 
We do not use it, however, because it would confuse the diagrams to use the 
ordinary Rayleigh number near the critical value, where it is still the controlling 
parameter, and switch to PR at larger values. 

The fact that mercury has a very small kinematic viscosity means that any 
convective flow is sensitive to shear instability. It is perhaps not surprising 
therefore that the flow should exhibit irregular temperature fluctuations 
even at  only slightly supercritical Rayleigh numbers. 

Fluid Mech. 36 
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5. The convective heat transfer in a rotating system 
The convective heat transfer in water and mercury has been measured over a 

wide range in Rayleigh and Taylor numbers, which includes the limit of no 
convection (or marginal stability). The two fluids exhibit quite different charac- 
teristics and are therefore discussed separately. For each fluid the heat flux is EL 

function of two parameters. A convenient way to summarize the results is to  

Ta 
FIGURE 11. Lines of constant Nusselt number as a function of the Rayleigh and Taylor 
numbers in water with Prandtl number 6-8. Except for small values of the Nusselt number 
a t  large Taylor numbers the error in the Nusselt number is 5 & 2 yo. 

plot lines of constant Nusselt numbers on a log Rayleigh number/log Taylor 
number diagram (see figure 11) .  Because of the extreme compression of both 
parameters the values of individual points have not been plotted. The large 
number of measurements precludes their tabulation in this paper.? The Rayleigh 
and Nusselt number estimates (with one exception discussed below) are accurate 
to within 2 yo. The error in Taylor number is less than 3 yo. 

Water 
The dot-dashed line C-C in figure 11 is the marginal stability curve according 
to Chandrasekhar (1961). We find excellent agreement between theory and 
experiment for the critical Rayleigh number at all Taylor numbers less than 
5 x 104; beyond this the fluid becomes unstable at lower Rayleigh numbers 

t A listing of tho measurements may be obtained from the Department of Geology 
and Geophysics, Massachusetts Institute of Technology, Cambridge, Massachusetts. 
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than the marginal stability theory predicts. At a Taylor number = lo8, for 
example, the measured critical Rayleigh number is about one-third the ex- 
pected value. We do not understand why this should be. It is found to be quite 
reproducible; i.e. if one changes the depth of the fluid, the instability will occur 
at  the same Rayleigh number for a given Taylor number. It appears therefore 
to be a finite-amplitude instability, but we cannot entirely rule out the possi- 
bility that it is caused by the curvature of the hydrostatic pressure field in a 
rapidly rotating fluid. It will become evident below in the discussion of the 
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FIGURE 12. Cross-section of figure 11. The Nusselt number is plotted as a function of the 
Rayleigh number for three Taylor numbers: x , Ta = 3.2 x los; 0, Ta = 0.95 x 106; 
+, Ta = lo'. 

mercury results that this instability is different from the one predicted by 
Veronis (1959, 1966). It can be easily verified that this subcritical instability 
cannot be an instability of the Ekman layer associated with a zonal flow. 

However, the Nusselt numbers obtained for different spacings do not agree 
beyond the instability point until N = 2.5 or larger. This is illustrated in figure 
12, which is a cross-section of figure 11 at  three different Taylor numbers. We 
note that at  Ta  = lo7 there are two curves for the Nusselt number, depending 
on the depth. This discrepancy is due to the effects of the radial acceleration on 
the basic flow. For a given point in the diagram a smaller depth implies a 
higher rotation rate and a larger temperature drop, both of which co-operate to 
generate a stronger zonal circulation than at  a larger depth. It is true that a 
larger temperature drop will also cause large convective velocities, but we show 
below that the ratio of zonal to convective motions will decrease with larger 
depths. 

The Nusselt number can be written as 

<wT) N = I+-- RATIH ' 
where () denotes averaging over the whole layer (see Veronis 1959). From this 
we see that w, for a given Rayleigh number, is cclld or CCAT*. The zonal 
velocity can be obtained from the thermal wind equation, which gives us an 
approximate estimate 

vrel = $aClRAT, ( 5 4  

which for constant Rayleigh and Taylor numbers is cc l/d2d3 = l/d5. 
21-2 



324 H .  T. Rossby 

and 
consequently a large spacing is preferred. Because of the ambiguity in measure- 
ments near the critical Rayleigh number, we cannot be certain that even with 
the larger spacing we have obtained the correct values. For this reason we 
have not drawn any iso-Nusselt-number lines between N = 1.0 and N = 2-0. 
At larger Nusselt numbers, however, the agreement is satisfactory, although 
even for the line N = 2 we have relied on data from larger spacings for its 
(proper) location. The question remains, however, as to why the subcritical 
instability should appear in a consistent way as the depth is changed whereas 
the Nusselt number does not. 

Another outstanding feature of figure 11 is the existence of a maximum 
Nusselt number at  a non-zero rotation rate for a given Rayleigh number, 
provided that the latter is greater than about lo4. For a given Nusselt number 
2 3 ,  the reduction of the Rayleigh number from its non-rotating value to its 
minimum is quite constant and equal to 0.6. The locus of the minima is 

What physical mechanism is responsible for this increase in the Nusselt 
number with increasing Taylor numbers? It would seem unlikely that an in- 
creased rotational constraint could provide a greater heat flux. Of course, one 
may speculate that this results from the basic parabolic pressure field. This 
appears to be very unlikely, however, since from (5.2) it is clear that the zonal 
velocities must be negligibly small, the mean interior gradient being much 
smaller than AT/d.  There is no objection to the larger heat flux per se for we 
know that if we had free instead of rigid boundaries in a non-rotating system 
the onset of convection would occur at  a much lower Rayleigh number. Hence 
for all Rayleigh numbers greater than this the heat flux would be greater with 
free boundaries. Numerical computations by Herring (1963) indicate that the 
Nusselt number is more than twice as large with free boundaries. 

At the Taylor numbers for which the Nusselt number is a maximum we have a 
slowly rotating system, by which we mean that the geostrophic constraint is not 
fully developed and is limited to interior flow away from the viscous boundary 
layers. But we have just shown that the viscous boundary layer imposes a 
great constraint on the heat flux. Then is it possible for the rotation to modify 
this boundary layer in such a way that a larger heat flux can be convected? 
We do not know the answer to this, but it can be noted that the scale of 
the Ekman layer, if there were one, would be the same as the scale of the 
thermal boundary layer at the Taylor number where the Nusselt number is 
maximum. For example, at R = lo5, T a  = lo4 the Ekman scale is dTa-*a or 
0.ld and the the thermal boundary layer is @ / N  = 0-12d. This suggests 
that an Ekman layer like perturbation of the boundary layer may modify it in 
such a way that the thermal gradients are intensified with a correspondingly 
larger heat flux as a result. It is clear that as the rotation is further increased 
the Ekman-layer scale will be smaller than the thermal boundary layer, leaving 
the latter increasingly exposed to a geostrophic constraint. Hence the decrease 
in heat flux at  very large Taylor numbers. 

The rate of growth of the Nusselt number with Rayleigh number becomes 

The ratio of zonal to convective velocity is, then, proportional to 

R M 2 0 q ~ 4 0 . 6 3 .  
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more rapid as the Taylor number is increased. It is tempting to speculate 
whether this approaches a limiting value or whether the Nusselt number 
would grow discontinuously if the Taylor number were increased without limit. 
It is worth observing that at these large Taylor and hence Rayleigh numbers 
there is at marginal stability an immense amount of potential energy stored in 
the fluid. Thus once a perturbation is allowed to grow there will be very large 
thermal gradients established, which may further enhance the instability. 
However, the measurement of such an integral property as the heat flux does 
not reveal the significant features of this process. 

Mercury 
Mercury responds quite differently from water to the effects of rotation, which 
we may expect because the small Prandtl number for mercury (0-025) will 
allow the possibility of time-dependent and finite-amplitude types of in- 

Ta 
FIGURE 13. Lines of constant Nusselt number as a function of the Rayleigh and Taylor 
numbors in mercury with Prandtl number 0.025. The dot-dashed lines 0-0 and C-C 
are the marginal stability lines according to Chandrasekhar (1961) for oscillatory and 
steady convection. The dot-dashed line T-T delineates the experimentally determined 
transition between oscillatory and irregular convection. The error in the Nusselt number 
is 5 &3%. 

stabilities. The curves C-C and 0-0 in figure 13 are the marginal stability curves 
for steady and oscillatory convection according to Chandrasekhar (1961). 
We find excellent agreement between experiment and theory when the Taylor 
number is greater than lo5. 

For Taylor numbers less than 1.8 x 104 the agreement between linear theory 
and experiment is poor. This is expected because of a finite-amplitude instability 
which has been suggested by Veronis (1959, 1966). This instability, he argues, is 
based on the growth of a disturbance which will offset the effects of rotation 
in such a way that the convective flow can be maintained even when the 
Rayleigh number is reduced below its critical value (according to linear theory) 
for a given rotation rate. There are not yet available exact computations of the 
limiting curve for this instability with rigid boundaries, but the general form 
of the stability curve with free boundaries is very similar to our results. One 
specific difference, however, is that experimentally the flow is not steady. 
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For Taylor numbers between 1.8 x lo4 and lo5 experiment and theory do not 
quite agree. I n  this range the onset of oscillatory convection must be established 
by studying the time recording of a thermocouple in the fluid to verify the 
presence of oscillatory temperature fluctuations (see figure 16). The convective 
heat fluxes are so small that the exact location of the critical Rayleigh number 
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FIGURE 14. Experimentally determined values for the oscillation frequency for oscillatory 
convection in mercury as a function of the Taylor numbcr for different depths of the fluid: 

, 0.69 em; 0, 1.0 cm; x , 1.8 cm; [3, 3.0 cm. The line 0-0 is the oscillation frequency 
according to Chandrasekhar (1961). Its exact location is not known between Ta = lo4 
and I'a = lo6. 
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FIGURE 15. Cross-section of figure 13. The Nusselt number is plotted as a function of the 
Rayleigh number for three Taylor numbers:., Ta = lo4; x , Ta = 3 x lo5; A ,  T a  = 3 x lo6.  

cannot be determined by extrapolation to N = 1.00. We do not know with any 
certainty why the stability curve is about 10-15 yo lower than the theoretically 
predicted curve. Since the discrepancy is much larger in this range of Taylor 
numbers than a t  larger Taylor numbers, we believe it is a characteristic of the 
fluid. It is possible that it is a finite-amplitude oscillatory instability. Some evi- 
dence of this may be found in figure 14, which shows the oscillation frequency as 
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a function of the Taylor number. The heavy line 0-0 is according to Chandrase- 
khar (1961) and is dashed between lo4 and lo6 because he did not report any 
values of the frequency in this range. Note that the data scatter on the upper 
side of the curve, as one might expect, since the frequency increases slightly 
with the Rayleigh number. However, for Taylor numbers between lo4 and 
4 x lo4 the points scatter on the lower side of the curve and, in fact, the fre- 
quencies jump almost discontinuously at  about Ta = 4 x lo4. This may be an 
indication of a different type of instability. It would be valuable to  know the 
exact location of the oscillation frequency curve in this range. 

&---- 

FIGURE 16. Sample records of the temperature fluctuations in mercury for increasing 
Rayleigh numbers at a Taylor number = 3.8 x 10’. The Rayleigh numbers are 72,000; 
94,000; 126,000; 191,000 and 250,000. The three lower records are regarded as oscillatory 
and the upper two as irregular. 

Although the finite-amplitude steady instability curve intersects the oscilla- 
tory instability curve at Ta = 1.7 x lo4, it is still a clearly defined instability at  
Taylor numbers up to lo5 and beyond, although the fluid is first unstable to 
the oscillatory instability. 

For Taylor numbers greater than lo6, in the asymptotic range, the transition 
Rayleigh number from oscillatory to irregular motion is about 4R,Ta and is 
indicated by the dot-dashed curve T-T (see figure 13). It is somewhat vaguely 
defined as the highest Rayleigh number at which one can, without ambiguity, 
determine an oscillation frequency by a simple period count. At larger Rayleigh 
numbers periodic fluctuations still exist, but these are spread over a wide 
band of higher frequencies. Figure 16 shows a sample recording of such oscilla- 
tions for increasing Rayleigh numbers. The three lower ones are regarded as 
oscillatory and the top two as irregular. A power spectrum analysis of these is 
given in figure 17, and clearly indicates considerable spreading in the spectrum 
for the two largest Rayleigh numbers. 
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The transition from oscillatory to irregular convection is accompanied by a 
more rapid rate of increase in heat flux with the Rayleigh number. Although the 
transition is not abrupt, it is clearly distinguishable in figure 15, which is a 
cross-section of figure 13 at Ta = lo4, Ta = 3 x lo5 and TCG = 3 x lo6. Our 
results are inconsistent with those of Goroff (1960), who performed experiments 
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FIGURE 17. Power density spectrum of temperature oscillations in figure 16 at different 
Rayleigh numbers: 0, R = 72,000; +, R = 94,000; 0, R = 126,000; X ,  R = 191,000; 
0, R = 250,000. The Taylor number is 3.8 x lo7. 

in a rotating layer of mercury explicitly to establish whether oscillatory convec- 
tion is preferred for aZZ Rayleigh numbers less than the critical value for steady 
convection. His results indicated that this was the case, whereas we find the 
transition to occur at  a significantly lower Rayleigh number. It is not clear why 
our results should disagree so completely. We also note that his values for the 
Nusselt number are generally much smaller than those presented here. 

6. Summary 
This study has led to a more precise description of the stability properties 

of B6nard convection over a wide range in Taylor numbers at the two Prandtl 
numbers corresponding to water and mercury. In both cases we have found 
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partial confirmation of the linear stability theory for the onset of steady and 
oscillatory convection. 

Measurements with water revealed two striking features. The first is the 
presence of a subcritical instability at Taylor numbers greater than 5 x lo4 
which becomes more pronounced at  larger Taylor numbers. There is, however, 
some uncertainty about the accuracy of this observation due to the fact that 
the parabolic pressure field in a rotating system creates an undesired zonal 
flow which is not entirely negligible where this instability occurs. This is 
particularly noticeable in the heat flux measurements at Rayleigh numbers 
slightly larger than the observed critical value. 

The second feature is that water exhibits a maximum heat flux not without 
rotation but at a Taylor number which is an increasing function of the Rayleigh 
number, T a  = 206(Ta)063. It was conjectured that this increase is due to an 
‘Ekman-layer-like ’ modification of the viscous boundary layer. If this is true, 
one should not observe a similar increase with free boundary conditions. As the 
Taylor number for a given Rayleigh number is increased even further, however, 
the heat flux is rapidly reduced until the convection is suppressed entirely. 

Mercury has quite different characteristics. There is strong evidence of a 
finite-amplitude instability for 0 < Ta < 1.8 x lo4, which is in good qualitative 
agreement with a theoretical prediction by Veronis (1966). There is also evi- 
dence of a finite-amplitude oscillatory instability over a limited range in the 
Taylor number 1.8 x lo4 < Ta 5 lo5. This was established by the presence of 
temperature oscillations at  a slightly subcritical Rayleigh number with a lower 
frequency than expected by linear theory. For all Taylor numbers greater than 
lo5 the experiments are in excellent agreement with the predictions of the 
linear stability theory regarding the critical Rayleigh number and the oscillation 
frequency. In  mercury the Nusselt number is a monotonically decreasing 
function of the Taylor number. Further, it is much smaller than in water for 
any value of the Rayleigh and Taylor numbers except, of course, where mer- 
cury is unstable and water is not. There was no Taylor number at  which water 
was unstable and mercury stable. 

Heat flux measurements with mercury, water and also a silicone oil with a 
Prandtl number 200 were made without rotation. With water and the silicone 
oil we have found good agreement with earlier measurements by Silveston 
(1958). The Nusselt number for the oil can be written N = 0.184R0.2s1 for 
R > 4000. The upper limit is not known. Water follows this relation closely for 
R < 7000. At larger Rayleigh numbers non-linear dynamical effects due to the 
smaller Prandtl number become important and a better relation is given by 
AT = 0.131ROS0. Again the upper limit is not known. 

Mercury yields much lower Nusselt numbers and can be approximated 
N = 0.147R0*257 for R > 20,000. It is significant that no steady flow was 
ever observed with mercury. The accuracy of the heat flux measurements 
excludes the possibility of expressing the Nusselt number as constant x R)  
over the range of Rayleigh numbers considered here. 

A limited number of visual observations of the convective motions with 
rotation were made. The principal feature as the rotation was increased was first 
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the horizontal buckling of the convective rolls and finally their complete 
breakdown into vortices in what appeared to be a random distribution. 
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Appendix A. Computation of the heat flux 
The state of the experiment is for our purposes completely given by T32, q1 

(see figure 1) and T,,,,, where T32 specifies the temperature difference across 
the fluid, (E1-T3,) is a measure of the heat flux and T,,,, is essentially the 
average temperature of the fluid. The electrical output of the thermocouples is 
measured by a Leeds and Northrup potentiometer, type K-3, with a resolution 
of 0.1 pV.  When the experiment has reached steady-state conditions, the 
measurements are carried out in the following order: (i) check null position 
with a low-resistance (short) circuit going through the slip rings and all con- 
nectors. This is to make sure that no spurious e.m.f. is present in the plugs or 
slip rings. The maximum error ever observed is - 0.3 p V ;  (ii) check calibration 
of potentiometer with standard cell; (iii) measure T32 in p V ;  (iv) measure T41 
in pV;  (v) measure Tmean in p V ;  (vi) measure TS2 in pV. 

Unless steps (iii) and (vi) agree and do not change, the set is not accepted. 
In  practice, a large heat flux by turbulent convection can cause T,, to vary 
slightly, 0.1 to rtr 0.5 yo, depending on the fluid and the degree of turbulence, 
in which case an average is estimated. 

The computation of the heat flux is based on the assumption that the flux is 
the same in both epoxy layers and in the fluid (including the plexiglass wall). 
This is probably not exactly true, particularly if the ambient temperature differs 
from Tmean and if the fluid layer is thick. However, the experiment is reasonably 
well insulated all around with at  least a 1 in. thick padding of cotton, and 
Tmean is maintained to within k 1.5 “C of room temperature and practically all 
measurements. Thus the assumption above is considered to be valid. The heat 
flux per unit area through the epoxy layer is then simply 

where k, and I ,  are the thermal conductivity and thickness of each epoxy 
layer and HI is the heat flux per unit area, where T32 and T41 have been con- 
verted from pV to degrees Celsius. 

The total heat flux through the epoxy layer is equated to the sum of the heat 
fluxes in the fluid, area A,, and the plexiglass wall, area A,: 

where H2 is the corrected heat flux in the fluid per unit area, kp is the conducti- 
vity of the plexiglass and A ,  the area of the epoxy layers. Given the dimensions 

Hl = (kB’/2zB’) (%l-T32),  (A 1) 

= H2A2+(kpT32/d)A3, (A 2) 
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and the conductivities k ,  and kp,  the heat flux H, is known once T3, and 
T4, are measured. Actually, k ,  is not known a priori. It is determined, instead, 
by measuring the heat flux under non-convecting conditions. This is done most 
simply by setting the apparatus upside down and heating from above so that a 
stable stratification of the fluid results, or by rotating the experiment rapidly 
so that the convection is inhibited, 

The heat flux in the fluid is then 

Hz = k&/d, (A 3) 

where k is the thermal conductivity of the fluid. Combining this with (A 1) and 
(A 2), we obtain the heat meter constant, C,: 

k, kA, + k, A,  c - - =  
- 21, d(T41/T32- i) A ,  . 

In some of the heat flux measurements in water the output of the thermopile 
T,, was partially shorted ( - 10 yo). This was not noticed at  first. Fortunately 
the experiment had been calibrated at  each depth (a determination of C, in 
equation (A 4). After the circuitry was repaired a new determination of C, was 
performed and the error in C, was attributed to an error in T32. The loss in 
accuracy of T3, due to this mishap is at worst 5 0.3 yo. 

A more serious error became evident when about half of the water experi- 
ments were completed. C, was not constant but appeared to increase linearly as 
the depth was reduced. This was brought about by an unsatisfactory thermal 
contact between the thermocouples and the copper plates. The thermocouple 
wires are wrapped around the aluminium blocks before they enter the holes 
on the side of the copper plates. Hence gradients existed in the wires and 
introduced an error which was proportional to the temperature difference 
between the aluminium block and the copper plates. This difficulty was remedied 
by improving the thermal contact between the thermocouples and the copper 
plates by adding an aluminium oxide powder to the contact compound. There- 
after the experiment was calibrated anew. The new values for C, approached an 
asymptotic value as the depth was decreased. The change in C, resulting from 
this correction was used to correct T,, (see (A 4)). The loss of accuracy from 
this correction is estimated to be less than 0.2 yo. 

Nevertheless, after these corrections had been cared for with water, C, still 
decreased from its asymptotic value by N 3 yo as the depth increased from 0.5 
t o  3.5 cm. With a 20 cSt silicone oil C,  varied by about 11%. With mercury a 
measurable trend could not be established. This variation originates from an 
increased contribution to the heat flux by the cotton insulation just outside the 
Ride walls as the depth is increased and becomes relatively larger as the con- 
ductivity of the fluid is decreased. This decrease in C, can be attributed to a 
failure to estimate the kp A,  term properly; hence we have in effect an accurate 
correction for these side wall effects. Thus, for each depth, kpA,  is modified by a 
correction factor in such a way that C, is maintained constant. 

Very large heat fluxes give rise to non-negligible gradients in the copper plates 
between the thermocouples and the metal-fluid interfaces, in which case the 
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measured temperature drop must be corrected in order to yield the true tem- 
perature drop across the fluid. The measured temperature, T3,, is the sum of the 
temperature drops in the metal of thickness d em and across the fluid, qTf and 

The requirement that the heat fluxis constant through the fluid and the 
copper plates gives us 

2 7  (A 6) 
A - - -  kCUTn/r - A 

dcu d 

where d is the fluid depth. By eliminating TM between (A 5 )  and (A 6) we have 

k is the conductivity of the fluid and N is the Nusselt number, which is defined 
as the ratio of the actual heat flux in the fluid divided by the heat flux that 
would take place by conduction alone. Hence kiV is the effective conductivity 
of the fluid and T;, is the corrected temperature difference across the fluid. 
Because we have redefined T3,, we must modify the constant C, so that they 
are consistent. We do this by setting N = 1 in (A 7) and replacing T3, with 
Ti, in (A 4). 

A first estimate of the Nusselt number which is required to compute Ti, in 
(A 7) is obtained by eliminating Hl between (A 1) and (A 2). We have 

or A ,  v!!, A3 H, = cl(ql-q2) -- ~- A ,  d A,’ 

where H, is computed using the uncorrected value T32- The Nusselt number is 
then obtained by dividing the actual heat flux by the flux that would take 
place in the absence of convection, or 

N = H2/+ 

This first estimate of N is inserted into (A 7) to obtain the corrected value 
T;,. H ,  and N are then recomputed with Ti2 instead. 

T;,, H ,  and N give our best estimates of the temperature drop and the heat 
flux. It is convenient, however, to present Ti2 in non-dimensional form as the 
Rayleigh number 

where a, v and K in general are functions of T,,,,. 
The data are punched on to cards, one per measurement, and processed as 

outlined above on a computer. The physical properties of the fluid are computed 
by a sub-program where a, v ,  K and k are given as algebraic functions of T,,,,. 
Their values as a function of temperature are listed in appendix B. 
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The thermo-electric power of the thermocouples is assumed to obey the 
relation 

where A = 39.97pV/OC and E = 0.09. A is calibrated by maintaining the 
aluminium blocks at  a constant and accurately known temperature difference 
with negligible heat flux, to avoid any gradients, and measuring Tdl. This 
calibration is required because the thermocouples are guaranteed only to 1 yo 
accuracy by the manufacturer. E is obtained from International Critical Tables 
(1928). 

e.m.f. ,uV/degC = A +e(T,,,, - 22), (A 12) 

Appendix B. A tabulation of the physical properties of mercury, 
water and silicone oils 

A detailed tabulation is presented of the physical properties of mercury, 
water and 20 cSt silicone oil as a function of temperature. These properties 
include the density p (g/cm3), the coefficient of thermal expansion a ("C-l), 
the kinematic viscosity v (cm2/sec), the dynamic viscosity 7 (g/cm see), the 
thermal conductivity k (cal/cm "C see), the heat capacity C (cal/g "C), the 
thermal diffusivity K (emz sec-l) and the Prandtl number P (=  v / K ) .  In  addi 
tion, a less detailed listing of the properties of silicone oils is given for a wide 
range of temperatures. 

Mercury (tabZe 6 )  
The data are taken exclusively from the Liquid Metals Handbook (1953). This 
is in itself a collection of different sources of data and also includes a com- 
mentary on the original sources and the probable accuracies. We point out that 
there is a large discrepancy ( - 30 %) between different sources on the thermal 
conductivities. 

Water (table 7) 
The density, dynamic viscosity and thermal conductivity are taken from Inter- 
national Critical Tables (1928). The specific heat is taken from Tables of Physical 
and Chemical Constants (1959). 

20 centistoke silicone oil (table 8 )  
The density and the coefficient of expansion are taken from Bulletin no. 05-061 
(Dow Corning Chemical Products Division 1963). The value for the heat 
capacity was suggested to me by Dr A. Ingersoll(l965). The kinematic viscosity 
is measured experimentally, as the values given by the manufacturer are only 
nominal. The thermal conductivity is also measured experimentally and is 1 yo 
smaller than that given by the manufacturer. Our value is used. 

Dow Corning silicone Jluid no. 200 (table 9) 
This table is a reduced version of Bulletin no. 05-061 (Dow Corning Chemical 
Products Division 1963). The heat capacity data were suggested to me by Dr A. 
Ingersoll(l965). The density, coefficient of expansion, kinematic viscosity and 
thermal conductivity are taken from Bulletin no. 05-061. The dynamic viscosity, 
thermal diffusivity and the Prandtl number are computed from the preceding 
properties. 
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T p ax108 7x102 vx103 kx10 C X ~ O  K x 1 0  P X ~ O  

20 13-55 0.181 1.550 1-144 0.208 0.3321 0-463 0.247 
21 13.54 0.181 1.544 1.140 0.209 0.3321 0-464 0.246 
22 13.54 0.181 1.538 1.136 0.209 0.3320 0.466 0.244 
23 13.54 0.181 1.532 1.132 0.210 0.3319 0.467 0.242 
24 13.54 0.181 1.526 1.127 0.211 0.3319 0.469 0.241 
25 13.53 0.181 1.520 1.123 0.211 0.3318 0.470 0.239 

TABLE 6. The physical properties of mercury as a function of temperature 

T P a x  103 7 x 102 v x 1 0 2  ii x 103 C ~ ~ 1 0 3  P 
20 0.9982 0.207 1.006 1.008 1.402 0.9991 1.406 7.17 
21 0.9980 0.217 0.983 0.985 1.406 0.9989 1.410 6-99 
22 0.9978 0.227 0.961 0.963 1.410 0.9988 1.415 6.81 
23 0-9976 0.237 0.938 0.941 1.414 0.9987 1.419 6.63 
24 0.9973 0.247 0.916 0.918 1.418 0.9986 1.424 6.45 
25 0.9971 0.257 0.894 0.896 1.422 0.9985 1.428 6.28 

TABLE 7. The physical properties of water as a function of temperature 

T p E X  103 7 V iCx103 c K X  103 P 
20 0.9603 1.07 0.2053 0.2137 0.337 0.346 1.014 211 
21 0.9593 1.07 0.2006 0.2091 0.337 0.346 1.015 206 
22 0.9582 1.07 0.1959 0.2044 0.337 0.346 1.016 201 
23 0.9571 1-07 0.1912 0-1997 0.337 0.346 1-018 196 
24 0.9561 1-07 0.1865 0.1951 0.337 0-346 1.019 192 
25 0.9550 1.07 0.1818 0.1904 0.337 0.346 1.020 187 

TABLE 8. The physical properties of 20 cSt silicone oil as a function of temperature 

v x  102 
1 
2 
3 
5 

10 
20 

100 

P 
0.818 
0.873 
0.900 
0.920 
0-940 
0.955 
0968 

E X  103 

1.34 
1.17 
1.06 
1.05 
1.08 
1.07 
0.96 

k x  103 
0.24 
0.26 
0.27 
0.28 
0.32 
0.34 
0.37 

c 
0,435 
0.402 
0.386 
0.37 
0-356 
0-346 
0.335 

K X  103 

0.674 
0.741 
0.780 
0.824 
0.955 
1.03 
1-14 

P 
14.8 
27 
38.5 
61 
10.5 
194 
877 

TAELE 9. Typical properties of Dow Corning silicone fluid no. 200 at 25 "C 
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FIGURE 4. Vertical view of thermal convection for different values of the Kayleigh arid 
Taylor numhers. P = 100. The depth of the fluid is 0.7 cm and the field of view is about 
15 em. The axis of rotation is at the centre of the photographs in this and the following 
two figures. 
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FIGURE 5 .  Vertical view of thermal convection for different values of the Rayleigh and 
Taylor numbers. P = 100. The depth of the fluid is 1.0 cm and the field of view is about 
15 em. 
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FIGURE 6. Vertical view of thermal convection for different values of the Rayleigh mid 
Taylor numbers. P = 100. The depth ofthe fluid is 1.8 cm arid the field of view is about 
15 em. 
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